The Neural Basis of Infant Linguistic and Non-Linguistic Sound Processing Seen Through the New Light of FNIRS
Matthew H. Dubins1, Katherine S. White2, Melody S. Berens1, Ioulia Koelman3, Mark Shalinsky3, Laura-Ann Petitto1
1University of Toronto, 2University of Rochester, 3Massachusetts Institute of Technology
Petitto Funding: Dana Foundation Research Grant; NIH 5R01HD45822 Research Grant, NIH R21HD050558 Research Grant

METHODS
From birth, babies have the capacity to discriminate categorically the smallest “building blocks” of language—the phonetic units such as in [ba] [da]—from any of the world’s languages. By 10-12 months, they lose this universal capacity, and, instead, hone in on the phonetic inventory of their native language with increased precision1-2

What brain mechanisms support the remarkable infant capacity of phonetic discrimination so important for human language acquisition?
Equivocal Answers from Behavioral Data
Auditory-general3-4
Language-dedicated5-6

NEW QUESTIONS, NEW TECHNOLOGY
New views into the human brain help adjudicate long-standing behavioral controversy
What, When, How…
What brain tissue underlies language (phonetic) processing?
When does it come on line in human development?
How does it changes over time?

HYPOTHESIS LANGUAGE-DEDICATION will be evidenced by brain activation in tissue classically associated with the processing of native language phonetic units, involving specific sites in the human Left Hemisphere (e.g., Superior Temporal Gyrus, STG)4, but not other sounds

RESULTS

FUNCTIONAL NEAR-INFRARED SPECTROSCOPY (fNIRS)
INIRS – ADVANTAGES OVER FMRI
CHILD-FRIENDLY NEUROIMAGING METHOD
Closer measure of hemodynamic change (HbOxy, HbDeoxy, HbT)
Used with INFANTS, and up (Quiet, tolerant of movement)
Excellent spatial (~4 cm) and temporal (10 Hz) resolution

RESEARCHERS

REFERENCES

CONCLUSIONS
Do infants recruit language-dedicated or auditory-general brain tissue for the processing linguistic sounds?
Language-dedicated, and from an early age!
Young infants recruited classically language-dedicated left hemisphere brain tissue8-10,15, suggesting that these neural mechanisms come online early
Do infants show the same developmental trajectories for their responses to linguistic and non-linguistic sound processing?
Different trajectories based on linguistic status!
Infants showed developmental change in their recruitment of brain tissue when processing non-linguistic Tones, suggesting that there is a developmental shift in the recruitment of auditory-general brain tissue

ADVANTAGES IN SCIENCE FROM fNIRS
fNIRS has provided a window into the developing baby’s brain, allowing us to look inside the human brain’s developmental trajectory for processing linguistic and non-linguistic sounds over early life

INTRODUCTION
From birth, babies have the capacity to discriminate categorically the smallest “building blocks” of language—the phonetic units such as in [ba] [da]—from any of the world’s languages. By 10-12 months, they lose this universal capacity, and, instead, hone in on the phonetic inventory of their native language with increased precision1-2

What brain mechanisms support the remarkable infant capacity of phonetic discrimination so important for human language acquisition?
Equivocal Answers from Behavioral Data
Auditory-general3-4
Language-dedicated5-6

NEW QUESTIONS, NEW TECHNOLOGY
New views into the human brain help adjudicate long-standing behavioral controversy
What, When, How…
What brain tissue underlies language (phonetic) processing?
When does it come on line in human development?
How does it changes over time?

HYPOTHESIS LANGUAGE-DEDICATION will be evidenced by brain activation in tissue classically associated with the processing of native language phonetic units, involving specific sites in the human Left Hemisphere (e.g., Superior Temporal Gyrus, STG)4, but not other sounds

METHODS

PARTICIPANTS

AGE GROUP
N Language Background Language Milestone

Young (2 – 6 Months)
4 English Only Universal Phonetic Perception

Older (10 – 16 Months)
4 English Only Native Phonetic Perception

STIMULUS

(fordure duration, mean pitch, mean intensity)

English (E, Native) Zulu (Z, Non-Native)10 Tone (T, Non-Linguistic)

/ta/ – /pa/ /la/ - /lla/

Block-Design

E (15s) 15s
Z (15s) 15s
T (15s) 15s

* 12

10 x 20 Coordinates11

CORRESPONDING AUTHOR
Laura-Ann Petitto
Petitto@utsc.utoronto.ca

Society for Research in Child Development 2009